
Verification & Validation of Agent-Based Simulations
using Approximate Model Checking

Benjamin Herd, Simon Miles, Peter McBurney, and Michael Luck

King’s College London, Department of Informatics
London, United Kingdom

Abstract. This paper focusses on the usefulness of approximate probabilistic
model checking for the internal and external validation of large-scale agent-based
simulations. We describe the translation of typical validation criteria into a vari-
ant of linear time logic. We further present a prototypical version of a highly
customisable approximate model checker which we used in a range of experi-
ments to verify properties of large scale models whose complexity prevents them
from being amenable to conventional explicit or symbolic model checking.

Keywords: agent-based simulation, verification, validation, model checking

1 Introduction

Agent-based simulation (ABS) is rapidly emerging as a popular paradigm for the sim-
ulation of complex systems that exhibit a significant amount of non-linear and emer-
gent behaviour. It is applied successfully to an ever-increasing number of real-world
problems and could in many areas show advantages over traditional numerical and an-
alytical approaches. Due to the high level of complexity, however, ABSs are difficult
to understand, to verify and to validate. In order to deal with the large number of be-
haviours that a model can exhibit, random variance in the output and an often huge
input parameter space, comprehensive experiments need to be conducted in all stages
of the development process as well as during productive use. Insight into the dynam-
ics is typically obtained by analysing the output (often by executing complex database
queries), by statistical analysis and inductive reasoning. Similar to other software sys-
tems, correctness also plays a central role in agent-based simulation and questions of
quality assurance become increasingly important [17]. In this context, it is important to
distinguish between verification and validation. Whereas the former is targeted towards
a system’s correctness with respect to its specification, the latter ensures a sufficient
level of accuracy with respect to the intended application domain, i.e. the real-world
phenomenon in an ABS. Verification is typically associated with correctness of the im-
plementation whereas validation is more targeted towards the system’s representativity.
The boundary between verification and validation is often blurred, particularly in the
context of simulation models. In this paper, we are not concerned with the actual im-
plementation of an ABS but rather with its conceptual correctness. We will employ the
following terminology: By validation, we refer to the general process of assessing the
conceptual correctness of an ABS. In order to distinguish between correctness checks

2 V&V of Agent-Based Simulations using Approximate Model Checking

which concern the internal dynamics of the model only and those which include exter-
nal (e.g. historical) data, we use the terms internal and external validation, respectively.
By verification we refer to the technical process of answering a formalised question us-
ing a rigorous approach, i.e. a formal verification technique such as model checking. In
short, we aim to use formal verification techniques for the purpose of ABS validation.

Due to their interconnected and emergent nature, ABSs typically exhibit a large
semantic gap between their static (the code) and dynamic (the runtime behaviour) rep-
resentation. In his seminal paper, Dijkstra points out a problem which will probably
sound familiar to many of those working in agent-based modelling [6]: “My second
remark is that our intellectual powers are rather geared to master static relations and
that our powers to visualize processes evolving in time are relatively poorly developed”.
Although he talks about the goto statement and its implications on code quality, the
problem that we face in agent-based modelling is similar: what makes an ABS so hard
to understand and control (and renders static analysis for its validation largely useless)
is the fact that the global behaviour cannot easily be anticipated by scrutinising the
behavioural logic of the individuals. Interaction between individual agents following
simple (and well understood) behavioural rules may lead to positive or negative feed-
back loops which may either amplify, reduce or even cancel out certain effects entirely.
It is exactly this element of surprise which makes ABSs powerful and complicated at
the same time. Even the most experienced modeller will face situations in which the
observed behaviour diverges significantly from what was intended or expected. It is the
modeller’s task to make sure that desired things happen and undesired things do not.
It is of particular importance during this process to establish whether observed global
behaviours are actually emerging from the individual’s local rules or whether they are
caused by an undesired mechanism, an artefact [10]. This, however, is a nontrivial task
which requires deep understanding of the model’s dynamics. The best way to under-
stand the dynamics of an ABS is to build up a comprehensive set of validation criteria,
i.e. a description of the desired behaviours, and test the system thoroughly and system-
atically against it. In order to accomplish that, we require two essential ingredients:

1. a language to describe validation criteria in a formal and unambiguous way
2. an automated mechanism to check if an ABS satisfies its validation criteria.

This paper addresses both points. Our contributions are (i) a demonstration of the
usefulness of approximate model checking for ABS validation (Section 4); (ii) a de-
scription of how common ABS validation criteria can be formalised in a probabilistic
variant of linear temporal logic (Sections 5 and 6); and, (iii) the description of a proto-
type infrastructure for ABS validation with approximate model checking (Section 7).

The paper starts with a brief overview of related work on formal ABS analysis and
verification and its limitations in Section 2 followed by some theoretical background in
Section 3. Our ideas have been evaluated in a range of experiments which are described
in Section 8. Here we demonstrate the application of approximate model checking to an
ABS of considerable size and show its benefits for the analysis as well as its advantage
over conventional model checking.

V&V of Agent-Based Simulations using Approximate Model Checking 3

2 Related Work

In the following, we describe related work in the area of formal verification for proba-
bilistic agent-based systems and simulations. A good overview of statistical validation
techniques (which is omitted here) is given in Kleijnen’s and Sargent’s papers [14, 18].

Despite the growing importance of ABS, dedicated formal verification techniques
for their analysis are still largely missing. In recent years, probabilistic model check-
ing has gained increasing importance for general multiagent systems (of which ABSs
are a special type). An interesting approach to verify the emergent behaviour of robot
swarms using probabilistic model checking has been presented by Konur et al. [15]. In
order to tackle the combinatorial explosion of the state space, the authors exploit the
high level of symmetry in the model and use counter abstraction [9]. In doing so, the
authors manage to transform the problem which is originally exponential in the number
of agents into one which is polynomial in the number of agents and exponential in the
number of agent states. This is a significant improvement, yet it still remains limited to
relatively small-scale systems.

Ballarini et al. [3] apply probabilistic model checking to a probabilistic variant of
a negotiation game. They use PRISM [16], a probabilistic model checker, to verify
PCTL (Probabilistic Computation Tree Logic) [2] properties referring to (i) the value
at which an agreement between two agents bargaining over a single resource is reached
and (ii) the delay for reaching an agreement. In this scenario, the overall state space is
small and therefore combinatorial explosion is not an issue. According to the authors,
probabilistic verification provides an interesting alternative to analytical and simulation
methods and can provide further insight into the system’s behaviour.

Dekhtyar et al. [5] describe a method to translate a multiagent system into a finite-
state Markov chain and analyse the complexity of probabilistic model checking of its
dynamic properties. Apart from mentioning the exponential complexity of both state
space creation and verification, however, the authors do not present any ways to cir-
cumvent this problem. The verification of epistemic properties has also been addressed
against the background of probabilistic agent-based systems.

Wan et al. [20] propose PCTLK, an epistemic, probabilistic branching-time logic
which extends CTL (Computation Tree Logic) [2] with probabilistic and epistemic
operators. In their paper, the focus of interest is rather on agent internals and thus com-
plexity issues are not addressed.

A different formal approach to the analysis and verification of agent-based simu-
lations has been proposed by Izquierdo et al. [13], who describe how simulations can
be encoded into time-homogeneous Markov chains and analysed with respect to their
transient and steady-state behaviour. Since the main focus of the paper is on the use-
fulness of Markov chain analysis for the understanding of complex simulation models,
the authors do not provide any state space reduction techniques in order to circumvent
the combinatorial explosion. However, they describe ways of analysing the limiting be-
haviour without having to represent the transition matrices by mere reasoning about
the nature of the state space and deriving characteristics of the corresponding Markov
chain. Despite advances, however, the verification of properties of large-scale ABSs
with a focus on macro-level behaviour remains a largely unsolved problem.

4 V&V of Agent-Based Simulations using Approximate Model Checking

3 Background

Probabilistic transition systems: A Probabilistic Transition System (PTS) is a tuple
M = (S ,P , I ,AP ,L) where S is a countable (but possibly infinite) set of states,
P : S × S → [0, 1] is a transition probability function such that for each s ∈ S :�

s�∈S P(s , s �) = 1, I ⊆ S is the set of initial states, AP is a set of atomic propositions
and L : S → 2AP is a labelling function. A path σ through a PTS is a finite or infinite
sequence of states (s0, s1, ...,) such that P(si , si+1) > 0 for all i ≥ 0. By σ[n] we refer
to the n-th element of path σ and by σ[j ..] to the fragment of σ starting in σ[j]. The
state space of an ABS can be modelled as a PTS in which each state represents a global
state of the simulation. Due to the hierarchical nature of an ABS, each global state is
itself comprised by n individual agent states plus the state of the environment. Each
simulation run thus corresponds to one particular path σ through the underlying PTS.

Linear temporal logic: The treatment of time in temporal logic can be roughly subdi-
vided into branching time (CTL, CTL*) and linear temporal logic (LTL) [2]. Branching
time logics assume that there is a choice between different successor states at each time
step and thus views time as an exponentially growing tree of ‘possible worlds’. Linear
time logic views time as a linear sequence of states. The approach described in this pa-
per is based upon the analysis of individual finite paths representing simulation output.
Since each path comprises a sequence of states, it is natural to assume linear temporal
flow. We thus focus on LTL, the syntax of which is given below:

φ ::= true | a | φ ∧ φ | φ ∨ φ | ¬ φ | Xφ | φU φ | φU≤k φ (1)

The basic building blocks are atomic propositions a ∈ AP , the Boolean connectives
∧ (‘and’), ∨ (‘or’) and ¬ (‘not’) and the temporal connectives X (‘next’) and U (‘until’)
including a bounded variant. LTL formulae are evaluated over paths. For formula φ and
state s , true always holds, a holds iff a ∈ L(s), φ1 ∧ φ2 holds iff φ1 holds and φ2 holds,
φ1 ∨ φ2 holds iff either φ1 or φ2 holds, ¬ φ holds iff φ does not hold and Xφ holds iff
φ holds in the direct successor state of s . For formulae φ1 and φ2, φ1Uφ2 holds in state
s iff φ1 holds in s and φ2 holds at some point in the future. φ1U

≤k φ2 holds iff φ1 holds
in s and φ2 holds at some point within the next k time steps. Other logical connectives
such as ‘⇒’ or ‘⇔’ can be derived in the usual manner: φ1 ⇒ φ2 ≡ ¬ φ1 ∨ φ2

and φ1 ⇔ φ2 ≡ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1). Additional temporal operators such as F
(‘finally’,‘eventually’), G (‘globally’,‘always’) and W (‘weak until’) can be derived as
follows: Fφ ≡ true Uφ (φ holds eventually), F≤kφ ≡ true U≤k φ (φ holds eventually
within k time steps), Gφ ≡ ¬ F(¬ φ) (φ holds always) and φ1Wφ2 ≡ (φ1 U φ2) ∨
Gφ1 (φ1 may be succeeded by φ2). It is often helpful to use certain combinations of
operators. For example, GFφ states that “φ is satisfied infinitely often”; FGφ states
that “φ will eventually hold forever”.

Approximate model checking: Model checking [4] is a popular verification technique
which uses a formal representation M of the system under consideration (usually a
finite state model) together with a specification of the system’s desired properties p,
typically given in temporal logic. The verification of a system’s correctness is then

V&V of Agent-Based Simulations using Approximate Model Checking 5

done by checking whether a given property p holds (formally M |= p) by examining
all possible execution paths. In the case of violation, the model checker can provide
a counterexample. In order to deal with inherently random systems, probabilistic ex-
tensions to model checking have been developed [16]. Despite impressive advances
made in recent years, exponential growth of the underlying finite-state model (the so-
called state space explosion) remains a central problem which makes the verification of
non-trivial real-world systems difficult or even impossible. Apart from symbolic model
checking, a number of techniques have been developed in order to tackle this problem,
such as reduction, abstraction, compositional verification and approximation. In this pa-
per, we focus on the latter idea. Approximate (also statistical) model checking (AMC)
is based on the following principle: n paths from the state space underlying the system
under consideration M are obtained through random sampling. It is then checked for
each path σ whether σ satisfies a given linear-time property φ, denoted σ |= φ. The
verification of φ on path σ can be considered a Bernoulli trial with either positive or
negative outcome. Let A denote the number of successes in a sequence of N Bernoulli
trials. The overall probability of M satisfying φ, denoted Pr(φ), can then be approxi-
mated by A/N . Clearly, the number of samples – i.e. paths verified – has a significant
impact on the accuracy of the result. By varying it, the confidence with which the re-
sulting probability reflects the actual probability can be adjusted. Several approaches
to address this problem have been proposed. We follow the work by Hérault et al. [11]
who provide a probabilistic guarantee on the accuracy of the approximate value gen-
erated by using Chernoff-Hoeffding bounds on the tail of the underlying distribution.
According to this idea, ln

�
2
δ

�
/2�2 samples need to be obtained in order to achieve a

result Y that deviates from the real probability X by at most � with probability 1 − δ,
i.e. Pr(|X − Y | ≤ �) ≥ 1 − δ. This results in the Generic Approximation Algorithm
(GAA) outlined in Alg. 1. It accepts four inputs: a path generator pathGen1, an LTL
property φ, the desired path length k , an approximation parameter � and a confidence
parameter δ. The algorithm obtains N samples where N is a function of � and δ. Prop-
erty φ is then evaluated separately for each path. Every successful evaluation increases
a counter variable A. A/N then provides an estimation of the actual probability of φ.

Algorithm 1 Generic Approximation Algorithm GAA
Input: pathGen,φ, k , �, δ
N := ln

�
2
δ

�
· 1
2�2

A := 0
for i := 1 to N do

1. Generate a random path σ of length k using pathGen
2. If φ is true on σ then A := A+ 1

end for
return A/N

1 In Hérault’s paper, this parameter is referred to as diagram [11].

6 V&V of Agent-Based Simulations using Approximate Model Checking

4 Agent-Based Simulation and Approximate Model Checking

In agent-based modelling, conventional statistical analysis is the predominant approach
to validation. To this end, simulation output is often written to a relational database,
extracted with SQL and analysed with statistical methods. This is convenient for ex-
ploratory analysis, i.e. for summarising the main statistical characteristics of the output
or for comparing the simulation output with historical data. Formulating complex be-
havioural expectations including temporal relationships, however, can become a manual
and time-consuming process. Consider, for example, the following statement about the
desired behaviour of an agent in a transmission simulation: “it should hold for the ma-
jority of agents that, whenever an agent is susceptible, it must become infected within t
time steps, otherwise it must recover again”. Translating such a statement into a statisti-
cal test is nontrivial. The situation is further complicated in the presence of randomness,
i.e. if transitions only occur with a certain probability. As a consequence, the nature of
any validation effort is typically highly tailored to the project and characterised by the
development of custom validation scripts which exacerbates scalability and reusability.

On the opposite side of the spectrum of quality control, formal verification – partic-
ularly model checking – has been used successfully in safety critical areas such as air
traffic control, nuclear reactor protection or railway signalling. The mathematical rigour
of model checking as well as its exhaustive nature make it a powerful verification tool.
On the other hand, its applicability is hampered by the high level of expertise required
as well as by well-known scalability issues. The high complexity of ABSs on one hand
and their incompatibility with compositional verification techniques on the other hand
renders conventional model checking unsuitable as a tool for their validation.

Approximate model checking (AMC) offers a nice balance between strict formal
verification and statistical analysis. We believe it is of particular usefulness for ABS
validation, for reasons given in the following. First, because of its non-exhaustive na-
ture, AMC is interesting for systems whose complexity prevents the usage of conven-
tional model checking. The parameters of the randomised algorithm can be used to
approximate the actual verification result to an arbitrary degree of accuracy. Since the
achievable accuracy is a function of the number of sample paths generated and this gen-
eration process may be expensive, AMC is particularly suitable for the verification of
non-safety-critical systems for which an approximate result is sufficient. The vast ma-
jority of ABSs is extraordinarily complex but at the same time also non-safety-critical;
a quick verification process that produces reasonably accurate results is thus mostly
preferable over a highly precise, time-consuming one. Second, AMC allows for the sep-
aration of path creation (i.e. simulation) from actual verification. This makes it possible
to verify blackbox systems from which only the output is available and whose logic
cannot (or only with considerable effort) be translated into a more formal, lower-level
language as required by conventional model checkers such as PRISM [16] or Spin [12].
The separation also allows for easy integration of the model checker into an existing
simulation environment. Third, due to typically stochastic nature, repeated execution
of an ABS provides a natural sampling of paths from the underlying probability space
as required by AMC. Finally, the use of temporal logic allows for the formulation of
complex behaviours in a succinct and descriptive way which makes it possible to for-
mulate expectations about all observational levels (micro, meso and macro). Due to its

V&V of Agent-Based Simulations using Approximate Model Checking 7

approximate nature and in contrast to other model checking techniques which focus on
individual or small groups of agents, AMC is perfectly capable of dealing with huge
populations. This makes it a suitable candidate not only for the analysis of individual or
organisational but also for global, emergent behaviours of arbitrarily large ABSs.

It is important to note that, due to its focus on finite paths, AMC is not able to
analyse the steady-state behaviour of the underlying system. Given the time-bounded
nature of most ABSs and the typical focus of validation on the temporal behaviour
along individual paths, however, this is uncritical. The time-bounded nature of ABSs
also eliminates the need for adjusting the maximum path length dynamically according
to the result of the verification of an LTL formula (which can be hard) or, alternatively,
the need for monotone LTL formulae [11]. AMC is also interesting from an engineering
perspective since, due to the independence of individual path samples, verification can
be easily parallelised.

The following section addresses the criteria formulation problem by describing
PLTLa, a probabilistic variant of linear temporal logic, and its applicability for the for-
mulation of ABS properties.

5 Towards a Temporal Logic for Agent-Based Simulations

In order to be verifiable by means of AMC, validation criteria need to be formulated
in a linear temporal logic. In its basic form, LTL comprises only atomic propositions
and temporal and Boolean operators. In order to verify statements like “eventually the
number of infected agents will exceed 100”, it is thus necessary to introduce a ‘helper
property’, e.g. numInfGt100, which is true in all states in which the number of in-
fected agents is greater than 100. The statement can then be expressed by combining
the atomic proposition with a temporal operator: φ = FnumInfGt100. Although tech-
nically correct, this is not a very elegant solution. If we view the output of a simulation
as a sequence of states, each of which is itself composed of multiple attribute-value
pairs, it would be more convenient if we could refer to particular values in the simula-
tion output and formulate arithmetic and comparison statements within the logic itself.
Assuming the existence of a variable numInfected in the output, the property above
could then be reformulated as φ = F(numInfected > 100) which is much closer to
the statement in natural language.

The integration of numeric functions and simple arithmetic expressions into tem-
poral logic is not new and has, for example, been investigated in the context of LTL
with constraints (LTLc) [7]. Its usefulness for the verification of complex quantitative
and qualitative properties involving external data in the domain of biochemical systems
has been shown by Fages and Rizk [8]. We concentrate here on a subset of PLTLc (the
probabilistic extension of LTLc) which is restricted to bound variables and thus releases
the model checker from having to solve constraint satisfaction problems. We call this
logic PLTLa (Probabilistic LTL with arithmetic expressions) and show how it can serve
as a basic but powerful formal language for different types of typical ABS validation
criteria in the following. The syntax of PLTLa is given below:

8 V&V of Agent-Based Simulations using Approximate Model Checking

φ ::= true | bFunc | φ ∧ φ | φ ∨ φ | ¬ φ | val ✂ val | Xφ | φU φ | φU≤k φ

val ::= val ⊕ val | valval | nFunc | R

Here, ✂ ∈ {>,<,≥,≤,=, �=}, ⊕ ∈ {+,−, ∗, /}, valval is the power function,
bFunc is a placeholder for a Boolean function bFunc : S×2Args → {true, false} which
accepts a finite number of arguments drawn from an arbitrary set Args and returns true
or false, nFunc is a placeholder for a numeric function nFunc : S × 2Args → R
that accepts a finite set of arguments and returns a real number, and R is a numeric
constant. Note the interpretation of atomic propositions as Boolean functions and num-
ber variables as numeric functions, the usefulness of which is described further be-
low. As opposed to LTLc, we assume that all variables are bound, i.e. their values
are determined by the underlying model. In terms of satisfaction, the LTL fragment
of PLTLa is dealt with in the same way as in basic LTL. For the remaining fragment, let
Eval : S × val → R be an evaluation function which accepts any state s : S and any
val as input, evaluates val on s and returns a real number. Then val ✂ val holds in state
s iff Eval(s, val1) ✂ Eval(s , val2) holds. We further define Last ≡ ¬ X true (which
only holds in the final state of a trace) and FL(φ) ≡ F(φ ∨ Last). This variant of the
F operator will be important for preserving the semantics of nested temporal operators
(see Section 6). For the same reason, we also need to redefine the semantics of the G
operator as follows: Gφ ≡ φU Last . As described above, we aim to employ a Monte
Carlo approach to estimate the likelihood of a formula φ, denoted Pr(φ). In order to
refer to the probability of any PLTLa formula φ, we use the expression P✂p(φ) which
is true iff Pr(φ) ✂ p is true. We further use P=?(φ) to refer to the value of Pr(φ) itself.

Boolean and numeric functions play a central role in PLTLa. They allow for the inte-
gration of custom logic which facilitates the formulation of complex, multi-level prop-
erties. An important requirement for an ABS validation framework is the formulation
of properties over different levels: we may want to make statements about single agents,
about groups of agents or about the whole population. We may also want to make state-
ments about values which are not even part of the simulation output, e.g. aggregations
such as ‘the average number of healthy agents’. Instead of manually transforming the
output prior to validation, it would be more convenient to specify the mapping of output
values to aggregations of interest within the validation framework itself. Functions can
facilitate this process by offering a way to hide custom logic behind simple variables.
In this way, frequently recurring computations can be integrated without unnecessarily
cluttering the actual logical property. This is best illustrated with an example. Imagine
an ABS in which all agents have an attribute age which we assume can take values
in [1, 100]. In order to formulate individual properties, we can now define a numeric
function age : N × Att → R which accepts the ID of an agent and returns the current
value of age. age(x) can then be used just like any other numeric constant within the
temporal logic. Let us now look at groups of agents. When dealing with group-level
properties, we are mostly interested in some sort of aggregation. We may, for example,
want to formulate properties about the average number of infected agents, about the
minimum age of an infected agent or about the sum of all agents infected agents at time

V&V of Agent-Based Simulations using Approximate Model Checking 9

t . Again, all of these aggregations can be realised as numeric functions. For example,
let count : Att × Value → R denote a function which accepts the name of an agent
attribute att : Att (e.g. age), a possible value val : [1, 100] of the attribute and returns
the number of agents for which att = val . Like the attribute access function defined
above, count can then be used just like any other numeric constant within the PLTLa
formula. Boolean functions can be dealt with in the same way except that they are re-
quired to return a Boolean instead of a numeric value. The result of a Boolean function
can thus be seen as a substitute for an atomic proposition in conventional logic.

The next section describes the formalisation of typical validation criteria in PLTLa.

6 Validation Properties for Agent-based Simulations

An important part of the validation process is the formulation of a set of validation cri-
teria, i.e. a description of the desired behaviours of the simulation. In conventional ver-
ification, it is common to classify different correctness questions as reachability, safety
and liveness properties (among others which we shall not further discuss here). Since
ABSs involve potentially large populations of heterogeneous agents, each equipped
with arbitrarily complex internal behaviour, formulating a meaningful and sufficiently
exhaustive set of criteria can be hard. It is helpful to use the aforementioned taxonomy
as a means to guide and structure the formalisation process. In this section we show
how the different property types correspond to typical ABS validation criteria. We fur-
ther describe how basic questions that involve external (e.g. historical) reference data
can also be formulated using the same technical framework. We give examples for each
of these properties and show how they can be expressed in a formal way using PLTLa.

Reachability properties: Reachability questions ask whether, starting from an initial
state, a particular state s of interest can eventually be reached. In a probabilistic envi-
ronment, this corresponds to the question whether the probability of eventually reaching
s is greater than 0. Reachability forms an important basis for the verification of more
complex properties as described below. Consider, for example, an ABS simulating the
transmission of diseases. Possible reachability questions include: “what is the proba-
bility of reaching a state in which all agents are infected?” or “the probability of all
agents becoming infected within 10 time steps is less than p”. The temporal aspect of
both properties can easily be expressed using the (bounded) F (‘finally’) operator. In
order to formalise the statements in PLTLa, we first need to find a way to extract the
number of infected agents from a system state in order for this number to be usable
within a PLTLa formula. To this end, we define a function numInfected which returns
the number of infected agents. Remember that, since functions are an integral part of
PLTLa, numInfected can then be used just like any other numeric constant. Further let
numAgents denote a function returning the overall number of agents. We can now de-
fine the first property above as P=?(F(numInfected = numAgents)) and the second
property as P<p(F

≤10(numInfected = numAgents)).

Safety properties: In addition to checking whether a desired state is reachable, we
can also check undesired states for reachability. This leads to the definition of uncondi-
tioned safety properties which intuitively state that “something bad will never happen”.

10 V&V of Agent-Based Simulations using Approximate Model Checking

Unconditioned safety properties are invariants since they must hold for all reachable
states in the system2. In an epidemiological ABS, we might, for example, expect that
a situation in which all agents are infected should never occur. We can define a corre-
sponding safety property using the G (‘always’) operator: P>(1−�)(G(numInfected <
numAgents)). An interesting application for safety properties is to check for correct
state transitions. Imagine again an epidemiological ABS in which agents have an at-
tribute health : {0, 1, 2}3 and are only allowed to transition between those states in
the following order: S → I → R. Assuming numerical function health(x) which
returns the value of attribute health for agent x , we can now formulate the follow-
ing safety property: ‘if agent x is in state 0 (Susceptible) then it will never transition
directly into state 2 (Infected)’. In PLTLa, this property can be expressed as follows:
P>(1−�)(G(¬ (health(x) = 0 ∧ X(health(x) = 2)))4.

Conditioned safety properties impose restrictions on finite paths and thus cannot
be considered invariants [2]. Using an example from a different domain, we could as-
sert that “the number of sales should never exceed a given threshold unless a mar-
keting campaign has been started”. This property can be expressed using the W op-
erator. We first need to define a Boolean function campaignStarted which is true in
those states during which the campaign is running. We also need a numeric function
numSales which calculates and returns the overall number of sales in a particular
state of the simulation. The corresponding PLTLa property is P≥(1−�)((numSales ≤
t)W campaignStarted).

Liveness properties: Safety properties are always satisfied if the underlying system
does nothing at all, which is clearly not a desirable situation. It is thus important to
complement them with liveness properties which state that “something good will even-
tually happen”. An important subclass are repeated reachability or progress properties
which state that something will always eventually happen – a pattern which is often used
in validation criteria. In our example, we could, e.g., require that “it is always possible
to return to a state in which at most 10% of the agents are infected”. This corresponds
with the expectation that, whatever happens, the population is always able to recover.
In order to formulate this property in PLTLa, we can reuse the functions numInfected
and numAgents defined above. Progress properties typically use the nested GF op-
erator. However, the fact that we are dealing with finite traces has some implications
on the semantics of nested temporal operators which, for space limitations, shall not
be further described here. In order to ensure that the formal property correctly reflects
our requirement, we thus need to use operator FL instead of F. This results in the fol-
lowing formula: P≤p(GFL(numInfected = (0.1∗numAgents))). Progress properties
are particularly useful on the individual level. Imagine an ABS in which an agent is
expected to perform regular actions, e.g. product purchases. Given a Boolean function
purchase(x) which returns true whenever agent x made a purchase in a given tick, we
can formalise the progress expectation as follows: P≥p(GFL(purchase(x))).

2 Note that, in the presence of finite traces, the duality between invariants and negated reacha-
bility properties does not hold.

3 We assume the following mapping: 0 → Susceptible, 1 → Infected , 2 → Recovered .
4 Alternatively, the property can also be expressed as follows: P=0(F(health(x) = 0 ∧
X(health(x) = 2)))

V&V of Agent-Based Simulations using Approximate Model Checking 11

Comparing with a reference model: Many important and interesting internal validation
questions can be formulated as reachability, liveness or safety properties. An important
part of the validation of a simulation, however, is to assess external validity, i.e. how
well the simulation output correlates with a given reference model, e.g. historical data.
The reference model is often given in the form of time series data, i.e. sequences of
time-stamped data points. The validation question then becomes to determine the cor-
respondence between the reference model and the simulation output which is typically
done using statistical analysis [14].

Fortunately, the same technical framework can be used to formulate properties that
involve external data which fully integrates them into the model checking process.
In order to exemplify that, let us consider two common metrics for time series com-
parison: cumulative (CSE) and mean squared error (MSE). Let σ denote the simula-
tion output and σ̂ the reference model. We assume that both are of equal length. The
CSE of state i describes the sum of all squared errors up to state i : CSE (σ, σ̂, i) =�n

i=1(σ[i]− ˆσ[i])2. The MSE of state i is then calculated as follows: MSE (σ, σ̂, i) =
1/i ·CSE (σ, σ̂, i). A typical validation property could be: “The probability of the MSE
w.r.t. the number of infected agents of any initial path fragment exceeding threshold t
is less than or equal to p”. Since the MSE can be easily calculated from the CSE, all
we need is a numeric function CSE which, given state σ[i] as input, calculates and
returns the CSE up to this state. We also need a function tick which returns the cur-
rent time step. There are now several ways to formalise the property, one of which is
P≤p

(F(((1/tick)∗CSE) > t)). Alternatively, we could wrap the entire calculation into
a numeric function MSE which would then result in the following simplified version
of the property: P≤p

(F(MSE > t)).

7 (MC)2MABS: Monte Carlo Model Checker for ABS

Algorithm 2 Outline of the function SAT
Input: Path σ, PLTLa formula φ
1: if φ is bFunc return {σ[i] | φ |= call(φ)}
2: if φ is ¬ φ1 return {σ[i] | σ[i] �∈ SAT(σ,φ1)}
3: if φ is (φ1 ∧ φ2) return {σ[i] | σ[i] ∈ SAT(σ,φ1) ∧ σ[i] ∈ SAT(σ,φ2)
4: if φ is (φ1 ∨ φ2) return {σ[i] | σ[i] ∈ SAT(σ,φ1) ∨ σ[i] ∈ SAT(σ,φ2)
5: if φ is (φ1 ✂ φ2) return {σ[i] | σ[i] |= Eval(σ[i],φ1) ✂ Eval(σ[i],φ2)}
6: if φ is Xφ1 return {σ[i] | σ[i + 1] ∈ SAT(σ,φ1)}
7: if φ is (φ1 U φ2) return {σ[i] | σ[i] ∈ SAT(σ,φ2) ∨ (σ[i] ∈ SAT(σ,φ1) ∧ σ[i] ∈

SAT(σ,X(φ1 U φ2))}

In order to evaluate our ideas, we developed (MC)2MABS, an initial prototype of
a Python-based Monte Carlo Model Checker for Multiagent-Based Simulations. It has
full support for PLTLa and comprises the following components: (i) a PLTLa parser; (ii)
an interface to a path generator; (iii) a labelling mechanism; and, (iv) a model checker.
The PLTLa parser was implemented using the pyparsing library5. Properties can be

5 http://pyparsing.wikispaces.com

12 V&V of Agent-Based Simulations using Approximate Model Checking

formulated as conventional strings. Any property φ is parsed and translated into a tree
structure which contains numerical values as well as Boolean and numeric functions
as leaf nodes and φ as its root node. The interface to the path generator decouples the
simulation from the verification process and allows to plug in different path generators.
This facilitates the integration of (MC)2MABS into existing simulation environments. It
is also possible to use (MC)2MABS retrospectively, for example to analyse a set of paths
that have been generated elsewhere. This is particularly useful if the creation of paths is
expensive (e.g. due to time-consuming simulation) and cannot be done repeatedly and
on demand.

Model checking of a single output path in (MC)2MABS is based on a recursive la-
belling function SAT similar to those used in explicit state model checking [4]. A (sim-
plified) outline of the algorithm is shown in Algorithm 2. Given path σ and PLTLa
property φ, it performs a depth-first search through the parse tree of φ and, for each
subformula φs of φ, returns all states that satisfy φs . Path σ can thus be said to satisfy
property φ iff its initial state satisfies φ, i.e. iff σ[i] ∈ SAT(σ,φ). Function names ref-
erenced in PLTLa formulae are expected to exist as callable functions (as indicated by
line 1). Arithmetic expressions are evaluated using a special function Eval which was
briefly mentioned in Section 5 and shall not be further explained here. The probability
of φ being true in the entire state space is then approximated with the GAA algorithm
proposed by Hérault et al. [11] and further described in Section 3.

Similar approximate model checkers have been implemented before, e.g. APMC /
PRISM [11, 16], and MC2(PLTLc) [7]. MC2(PLTLc) is closest to (MC)2MABS. Our de-
cision to build yet another tool was motivated by the following facts: First, both PRISM
and APMC require the specification of the model in the Reactive Modules (RM) lan-
guage. Despite the power of the language, the translation of an ABS written in a higher-
level language like Java or even a domain-specific language like NetLogo [21] can be
challenging, especially for modellers with a nontechnical background. RM was not de-
signed as a general purpose language and data structures and helper functions typically
found in other languages are thus largely missing. MC2(PLTLc) is more flexible in this
respect and allows loading external simulation output. However, output parsing is hard-
coded and can thus not be adapted. Second, RM puts a strong emphasis on states and
transitions as opposed to the modelling of more complex behaviour which is the focus
of higher level languages. Nontrivial conceptual preprocessing of the model prior to
the actual implementation, i.e. translation into a state transition model, is thus neces-
sary. Third, all three tools are closed systems, i.e. none of them allows for the integra-
tion of custom logic which complicates or renders impossible the formulation of more
complex properties such as the MSE. Fourth, as opposed to communication protocols,
distributed randomised algorithms or game-theoretic problems (typical application do-
mains of PRISM), ABSs are characterised by a large number of individual constituents
(hundreds or thousands). In this context, properties like “at least x % are in state y”
become crucial. PRISM’s labelling mechanism is restricted to expressions formulated
over individual components. Because of that, the size of the textual description of such
aggregate propositions grows exponentially with the number of agents and the formula-
tion becomes cumbersome and error-prone. Finally, in PRISM each component (agent)
progresses individually and simulation of the population update as an atomic step is

V&V of Agent-Based Simulations using Approximate Model Checking 13

thus not possible. As a consequence, properties need to be formulated in a less intuitive
way and the path length to be analysed for bounded properties increases linearly with
the size of the population. (MC)2MABS is intended to be as customisable as possible by
allowing to ‘plug in’ external logic formulated in a high-level programming language in
order to satisfy ABS-specific requirements. Encapsulating complex custom logic into
simple Boolean propositions and numeric variables helps to decouple the interpreta-
tion of system states from the actual verification logic which increases modularity and
reusability of both functions as building blocks and properties as templates in different
validation scenarios. As mentioned above, the development of (MC)2MABS is still at a
very early stage. Nevertheless, first experiments have shown promising results. As we
shall describe below, we were able to verify properties for ABSs of considerable size
efficiently.

8 Experiments

Algorithm 3 Outline of the agent update function
p := number of infected neighbours
n := total number of neighbours
if state = Susceptible then

move to state Infected with probability p/n
remain in state Susceptible with probability 1− (p/n)

else {state = Infected}
move to state Recovered with probability 0.3
remain in state Infected with probability 0.7

else {state = Recovered}
move to state Susceptible with probability 0.5
remain in state Recovered with probability 0.5

end if

In order to assess the applicability of AMC to ABS validation, we designed two
experiments. They were conducted on an Amazon EC2 [1] 64-bit instance with one
virtual core comprising two EC2 computing units6, 3.75 GB of memory and Ubuntu
12.10 Server as operating system.

The first experiment involved the comparison between AMC and conventional sym-
bolic model checking. To this end, we wrote a simple (entirely unrealistic) epidemi-
ological model in Python (see Algorithm 3). All agents are connected to each other
and each agent can be in one of three states: Susceptible , Infected and Recovered .
Transitions between states are probabilistic and partly dependent upon the number of
infected neighbours. We also translated this model into PRISM’s RM language. Due
to the characteristics of RM discussed in Section 4 and the resulting complications in
translation, we restricted our comparison to the verification of a simple reachability
property (FallInfected) which states that eventually all agents will be in state Infected.
We executed the Python model 1,000 times and checked the property on each path

6 At the time of writing, each computing unit is equivalent to a 1.0-1.2 GHz 2007 Opteron or
2007 Xeon processor.

14 V&V of Agent-Based Simulations using Approximate Model Checking

(MC)2MABS PRISM
#agents Time #states #trans. Time

10 0.08 3.94 · 104 2.93 · 105 0.13
15 0.09 2.14 · 106 1.76 · 107 7.80
20 0.09 3.00 · 108 3.23 · 109 o.o.m.
50 0.09 out of memory

100 0.11 out of memory

Property
P1 P2 P3 P4 P5

#ticks #ticks #ticks #ticks #ticks
#agents 50 100 50 100 50 100 50 100 50 100

100 0.09 0.17 0.10 0.23 0.65 1.33 0.4 0.78 3.7 13.72
500 0.09 0.17 0.09 0.17 0.64 1.25 0.4 0.76 3.73 13.67
1000 0.09 0.17 0.09 0.17 0.64 1.25 0.39 0.76 3.73 13.63

Table 1. Runtime comparison between (MC)2MABS and PRISM’s symbolic model checker (left)
and time spent for the verification of NetLogo’s Virus on a Network model (right). All times are
given in seconds.

which results in δ = 0.01 confidence at an approximation of � ≈ 0.05. The population
size was varied from 10 to 100. The results (see Table 1 left) indicate that (MC)2MABS
outperforms PRISM’s symbolic model checker for which the exponential growth of the
underlying state space soon became a limiting bottleneck. All checks were performed
100 times. The coefficient of variation lies between 0.8% and 3%, suggesting little vari-
ance in runtime.

For the second experiment, we focussed on a more realistic and significantly larger
example and used (MC)2MABS to verify properties of Virus on a Network [19], an epi-
demiological model from the NetLogo [21] model library. Using the BehaviourSpace
feature which allows simulations to be run repeatedly, we created 1,000 sample paths.
The size of the population was varied from 100 to 1,000. In each experiment, we ob-
tained the approximate probability of the simple reachability property from above (re-
ferred to as P1) and the following properties:

P2: (F(numInfected = (numAgents ∗0.3))): “Eventually 30% of the agents will be infected”
P3: (FG(numInfected ≤ (numAgents ∗ 0.01))): “The population will always recover7”
P4: (G(sqError ≤ x)): “The SE btwn. the simulation and a ref. model is always < x”
P5: (meanSqError ≤ x): “The MSE btwn. the simulation and a reference model is less than x”

The results (see Table 1 right) indicate that properties of even large-scale models
can be verified efficiently. Similar to the first experiment, each check was performed
100 times. The coefficient of variation lies between 0.6% and 2.2%, indicating little
variance in runtime. The influence of the population size on the verification time is
negligible which suggests good scalability. On the other hand, the path length has a
significant impact. This is both due to the labelling process and to additional computa-
tion necessary, e.g. for P5. It needs to be taken into account, however, that (MC)2MABS
is currently entirely unoptimised. We are confident that the numbers can be improved
significantly by using more efficient data structures, by avoiding unnecessary looping
in the labelling process8 or by examining paths in parallel.

9 Conclusions and Future Work

In this paper we discussed the usage of approximate probabilistic temporal logic model
checking for large-scale ABS validation. We described how PLTLa, an extension of

7 By ‘recovering’ we mean returning to a state in which at most 1% are infected.
8 For example, a path could be labelled with multiple atomic propositions in a single iteration.

V&V of Agent-Based Simulations using Approximate Model Checking 15

LTL that allows for the formulation of arithmetic expressions and the integration of ex-
ternal logic by means of numeric and Boolean functions, can be used to encode common
internal and external multi-level validation criteria in a formal and rigorous way. By in-
terpreting atomic propositions and numeric values as function calls, even complex prop-
erties that involve aggregation over individual agents can be formulated in a succinct
way and verified automatically. We further presented our initial version of (MC)2MABS,
an approximate probabilistic Monte Carlo model checker tailored to the verification of
ABS validation criteria. Since (MC)2MABS concentrates on the simulation output and
treats the simulation itself as a blackbox, it can be integrated into existing simulation
environments without much effort. Given the interdisciplinary nature of ABS which
involves people from various domains often with non-technical backgrounds, the en-
capsulation of the technical verification process represents a critical advantage for its
practical adoption. Preliminary experiments showed promising results. Because of its
customisability with respect to both expressiveness and accuracy, (MC)2MABS can be
tailored to the characteristics of different types of ABSs and used for the verification of
arbitrarily large systems.

There are a number of open problems that we are currently working on. Due to its
focus on finite path fragments, the complexity in AMC is shifted from model construc-
tion and verification to the creation of a sufficiently large number of path samples in
order to guarantee a sufficient level of accuracy. Against the background of large-scale
real world systems, this aspect may represent a critical bottleneck. Depending on the
complexity of the original simulation, a single run may take a long time, which renders
the generation of thousands of traces impossible. A common idea followed by most ex-
isting verification tools is to offer a high-level description language in which the system
logic can be formulated. The high-level description can then be translated automati-
cally into a highly performant ‘path generator’ which is able to sample a large number
of paths efficiently. Similar to simulation itself, this process is also easily parallelisable
and can thus be engineered efficiently. We are currently working on a more expressive
temporal logic in which ABS-specific features like aggregation, selection and quantifi-
cation over groups of agents can be expressed more naturally within the logic itself.
Finally, we are investigating the possibility of adding ‘on-the-fly’ verification capabili-
ties to (MC)2MABS which would allow it to run as a monitoring process in parallel to the
simulation. In this way, violations of validation criteria could be detected immediately
when they happen and cause the simulation to stop. Given the often significant running
time, this has the potential to reduce the time needed for verification significantly.

References

1. Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.
2. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.
3. P. Ballarini, M. Fisher, and M. Wooldridge. Uncertain agent verification through probabilistic

model-checking. In Safety and Security in Multiagent Systems, volume 4324 of LNCS, pages
162–174. Springer, 2009.

4. E. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, Cambridge, MA,
USA, 1999.

16 V&V of Agent-Based Simulations using Approximate Model Checking

5. M. I. Dekhtyar, A. J. Dikovsky, and M. K. Valiev. Temporal verification of probabilistic
multi-agent systems. In Pillars of Computer Science, pages 256–265. Springer, 2008.

6. E. W. Dijkstra. Go to statement considered harmful. Communications of the ACM,
11(3):147–148, 1968.

7. R. Donaldson and N. Gilbert. A Monte Carlo model checker for probabilistic LTL with
numerical constraints. Technical Report 282, Dept. of Computing Science, University of
Glasgow, 2008.

8. F. Fages and A. Rizk. On the analysis of numerical data time series in temporal logic. In
Proc. Int. Conf. on Computational Methods in Systems Biology, pages 48–63. Springer, 2007.

9. H. Fecher, M. Leucker, and V. Wolf. Don’t know in probabilistic systems. In Model checking
software, pages 71–88. Springer, 2006.

10. J. M. Galán, L. R. Izquierdo, S. S. Izquierdo, J. I. Santos, R. del Olmo, A. López-Paredes, and
B. Edmonds. Errors and artefacts in agent-based modelling. Journal of Artificial Societies
and Social Simulation, 12(1):1, 2009.

11. T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate probabilistic model
checking. In Proc. 5th Int. Conf. on Verification, Model Checking and Abstract Interpreta-
tion, volume 2937 of LNCS, pages 307–329. Springer, 2004.

12. G. Holzmann. Spin model checker, the: primer and reference manual. Addison-Wesley
Professional, first edition, 2003.

13. L. R. Izquierdo, S. S. Izquierdo, J. M. Galán, and J. I. Santos. Techniques to understand
computer simulations: Markov chain analysis. JASSS, 12(1):6, 2009.

14. J. P. C. Kleijnen. Validation of models: statistical techniques and data availability. In Proc.
31st Winter Simulation Conf., pages 647–654. ACM, 1999.

15. S. Konur, C. Dixon, and M. Fisher. Formal verification of probabilistic swarm behaviours.
In Swarm Intelligence, volume 6234 of LNCS, pages 440–447. Springer, 2010.

16. M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In Proc. 7th Int.
Conf. on Formal Methods for Performance Evaluation, SFM’07, pages 220–270. Springer,
2007.

17. D. Midgley, R. E. Marks, and D. Kunchamwar. Building and assurance of agent-based
models: An example and challenge to the field. Journal of Business Research, 60(8):884 –
893, 2007. Complexities in Markets Special Issue.

18. R. G. Sargent. Verification and validation of simulation models. In Proc. 40th Conf. on
Winter Simulation, WSC ’08, pages 157–169. Winter Simulation Conference, 2008.

19. F. Stonedahl and U. Wilensky. NetLogo Virus on a Network model. Technical report, Center
for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston,
IL, 2008.

20. W. Wan, J. Bentahar, and A. Ben Hamza. Model checking epistemic and probabilistic prop-
erties of multi-agent systems. In Modern Approaches in Applied Intelligence, volume 6704
of LNCS, pages 68–78. Springer, 2011.

21. U. Wilensky. NetLogo. Technical report, Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL., 1999.

